This site is from a past semester! The current version will be here when the new semester starts.

Documentation

Guidelines

Guideline: Go top-down, not bottom-up

What

Can distinguish between top-down and bottom-up documentation

When writing project documents, a top-down breadth-first explanation is easier to understand than a bottom-up one.


Why

Can explain the advantages of top-down documentation

The main advantage of the top-down approach is that the document is structured like an upside down tree (root at the top) and the reader can travel down a path she is interested in until she reaches the component she is interested to learn in-depth, without having to read the entire document or understand the whole system.


How

Can write documentation in a top-down manner

To explain a system called SystemFoo with two sub-systems, FrontEnd and BackEnd, start by describing the system at the highest level of abstraction, and progressively drill down to lower level details. An outline for such a description is given below.

[First, explain what the system is, in a black-box fashion (no internal details, only the external view).]

SystemFoo is a ....

[Next, explain the high-level architecture of SystemFoo, referring to its major components only.]

SystemFoo consists of two major components: FrontEnd and BackEnd.

The job of FrontEnd is to ... while the job of BackEnd is to ...

And this is how FrontEnd and BackEnd work together ...

[Now you can drill down to FrontEnd's details.]

FrontEnd consists of three major components: A, B, C

A's job is to ...
B's job is to...
C's job is to...

And this is how the three components work together ...

[At this point, further drill down to the internal workings of each component. A reader who is not interested in knowing the nitty-gritty details can skip ahead to the section on BackEnd.]

In-depth description of A

In-depth description of B

...

[At this point drill down to the details of the BackEnd.]

...



Guideline: Aim for comprehensibility

What

Can explain the need for comprehensibility in documents

Technical documents exist to help others understand technical details. Therefore, it is not enough for the documentation to be accurate and comprehensive; it should also be comprehensible.


How

Can write reasonably comprehensible developer documents

Here are some tips on writing effective documentation.

  • Use plenty of diagrams: It is not enough to explain something in words; complement it with visual illustrations (e.g. a UML diagram).
  • Use plenty of examples: When explaining algorithms, show a running example to illustrate each step of the algorithm, in parallel to worded explanations.
  • Use simple and direct explanations: Convoluted explanations and fancy words will annoy readers. Avoid long sentences.
  • Get rid of statements that do not add value: For example, 'We made sure our system works perfectly' (who didn't?), 'Component X has its own responsibilities' (of course it has!).
  • It is not a good idea to have separate sections for each type of artifact, such as 'use cases', 'sequence diagrams', 'activity diagrams', etc. Such a structure, coupled with the indiscriminate inclusion of diagrams without justifying their need, indicates a failure to understand the purpose of documentation. Include diagrams when they are needed to explain something. If you want to provide additional diagrams for completeness' sake, include them in the appendix as a reference.

Exercises:

Statements about documentation




Guideline: Document minimally, but sufficiently

What

Can explain that documentation should be minimal yet sufficient

Aim for 'just enough' developer documentation.

  • Writing and maintaining developer documents is an overhead. You should try to minimize that overhead.
  • If the readers are developers who will eventually read the code, the documentation should complement the code and should provide only just enough guidance to get started.

How

Can write minimal yet sufficient documentation

Anything that is already clear in the code need not be described in words. Instead, focus on providing higher level information that is not readily visible in the code or comments.

Refrain from duplicating chunks of text. When describing several similar algorithms/designs/APIs, etc., do not simply duplicate large chunks of text. Instead, describe the similarities in one place and emphasize only the differences in other places. It is very annoying to see pages and pages of similar text without any indication as to how they differ from each other.




Tools

JavaDoc

What

Can explain JavaDoc

JavaDoc is a tool for generating API documentation in HTML format from comments in the source code. In addition, modern IDEs use JavaDoc comments to generate explanatory tooltips.

An example method header comment in JavaDoc format:

/**
 * Returns an Image object that can then be painted on the screen.
 * The url argument must specify an absolute {@link URL}. The name
 * argument is a specifier that is relative to the url argument.
 * <p>
 * This method always returns immediately, whether or not the
 * image exists. When this applet attempts to draw the image on
 * the screen, the data will be loaded. The graphics primitives
 * that draw the image will incrementally paint on the screen.
 *
 * @param url An absolute URL giving the base location of the image.
 * @param name The location of the image, relative to the url argument.
 * @return The Image at the specified URL.
 * @see Image
 */
public Image getImage(URL url, String name) {
    try {
        return getImage(new URL(url, name));
    } catch (MalformedURLException e) {
        return null;
    }
}

Generated HTML documentation:

Tooltip generated by IntelliJ IDE:


How

Can write JavaDoc comments

In the absence of more extensive guidelines (e.g., given in a coding standard adopted by your project), you can follow the two examples below in your code.

A minimal JavaDoc comment example for methods:

/**
 * Returns lateral location of the specified position.
 * If the position is unset, NaN is returned.
 *
 * @param x X coordinate of position.
 * @param y Y coordinate of position.
 * @param zone Zone of position.
 * @return Lateral location.
 * @throws IllegalArgumentException If zone is <= 0.
 */
public double computeLocation(double x, double y, int zone)
    throws IllegalArgumentException {
    // ...
}

A minimal JavaDoc comment example for classes:

package ...

import ...

/**
 * Represents a location in a 2D space. A <code>Point</code> object corresponds to
 * a coordinate represented by two integers e.g., <code>3,6</code>
 */
public class Point {
    // ...
}

Resources: